Topic # Feedback Control. StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback


 Tyrone Morton
 4 years ago
 Views:
Transcription
1 Topic # Feedback Control StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1
2 Fall Combined Estimators and Regulators Can now evaluate the stability and/or performance of a controller when we design K assuming that u = Kx, but we implement u = K ˆx Assume that we have designed a closedloop estimator with gain L ˆx(t) = Aˆx(t)+Bu(t)+L(y ŷ) ŷ(t) = C ˆx(t) Then we have that the closedloop system dynamics are given by: ẋ(t) = Ax(t)+Bu(t) ˆx(t) = Aˆx(t)+Bu(t)+L(y ŷ) y(t) = Cx(t) ŷ(t) = C ˆx(t) u = K ˆx Which can be compactly written as: ẋ A BK x = ˆx LC A BK LC ˆx ẋ cl = A cl x cl This does not look too good at this point not even obvious that the closedsystem is stable. λ i (A cl )=??
3 Fall Can fix this problem by introducing a new variable x = x ˆx and then converting the closedloop system dynamics using the similarity transformation T x cl, x x Note that T = T 1 = I I I x ˆx = Tx cl Now rewrite the system dynamics in terms of the state x cl A cl TA cl T 1, Ācl Note that similarity transformations preserve the eigenvalues, so we are guaranteed that λ i (A cl ) λ i (Ā cl ) Work through the math: I A BK I Ā cl = I I LC A BK LC I I A BK I = A LC A + LC I I A BK BK = A LC Because Ā cl is block upper triangular, we know that the closedloop poles of the system are given by det(si Ā cl ), det(si (A BK)) det(si (A LC)) =
4 Fall Observation: The closedloop poles for this system consist of the union of the regulator poles and estimator poles. So we can just design the estimator/regulator separately and combine them at the end. Called the Separation Principle. Just keep in mind that the pole locations you are picking for these two subproblems will also be the closedloop pole locations. Note: the separation principle means that there will be no ambiguity or uncertainty about the stability and/or performance of the closedloop system. The closedloop poles will be exactly where you put them!! And we have not even said what compensator does this amazing accomplishment!!!
5 Fall The Compensator Dynamic Output Feedback Compensator is the combination of the regulator and estimator using u = K ˆx ˆx(t) = Aˆx(t)+Bu(t)+L(y ŷ) = Aˆx(t) BKˆx + L(y C ˆx) ˆx(t) = (A BK LC)ˆx(t)+Ly u = K ˆx Rewrite with new state x c ˆx ẋ c = A c x c + B c y u = C c x c where the compensator dynamics are given by: A c, A BK LC, B c, L, C c, K Note that the compensator maps sensor measurements to actuator commands, as expected. Closedloop system stable if regulator/estimator poles placed in the LHP, but compensator dynamics do not need to be stable. λ i (A BK LC) =??
6 Fall For consistency in the implementation with the classical approaches, define the compensator transfer function so that u = G c (s)y From the statespace model of the compensator: U(s) Y (s), G c(s) = C c (si A c ) 1 B c = K(sI (A BK LC)) 1 L G c (s) =C c (si A c ) 1 B c Note that it is often very easy to provide classical interpretations (such as lead/lag) for the compensator G c (s). One way to implement this compensator with a reference command r(t) is to change the feedback to be on e(t) =r(t) y(t) rather than just y(t) r e u y G c (s) G(s) u = G c (s)e = G c (s)(r y) So we still have u = G c (s)y if r =. Intuitively appealing because it is the same approach used for the classical control, but it turns out not to be the best approach. More on this later.
7 Fall Mechanics Basics: e = r y, u = G c e, y = Gu G c (s) : ẋ c = A c x c + B c e, u = C c x c G(s) : ẋ = Ax + Bu, y = Cx Loop dynamics L = G c (s)g(s) y = L(s)e ẋ = Ax +BC c x c ẋ c = +A c x c +B c e L(s) ẋ ẋ c A BCc x = A c y = C x x c x c + B c e To close the loop, note that e = r y, then µ ẋ A BCc x = + r C x ẋ c A c x c B c x c A BC = c x + r B c C A c x c B c y = C x x c A cl is not exactly the same as on page 171 because we have rearranged where the negative sign enters into the problem. Same result though.
8 Fall Simple Example Let G(s) =1/s 2 with statespace model given by: 1 A =, B =, C = 1, D = 1 Design the regulator to place the poles at s = 4 ± 4j λ i (A BK) = 4 ± 4j K = 32 8 Time constant of regulator poles τ c =1/ζω n 1/4 =.25 sec Put estimator poles so that the time constant is faster τ e 1/1 Userealpoles,soΦ e (s) =(s + 1) 2 1 C L = Φ e (A) CA 1 Ã = = = 1 1 1!
9 Fall Compensator: A c = A BK LC 1 2 = = B c = L = 2 1 C c = K = Compensator transfer function: G c (s) = C c (si A c ) 1 B c, U E s = 144 s 2 +28s Note that the compensator has a low frequency real zero and two higher frequency poles. Thus it looks like a lead compensator.
10 Fall Compensator Gc Compensator Gc Phase (deg) Figure 1: Plant is pretty simple and the compensator looks like a lead 2 1 rads/sec. 1 2 Loop L Phase (deg) Figure 2: Loop transfer function L(s) shows the slope change near ω c = 5 rad/sec. Note that we have a large PM and GM.
11 Fall Imag Axis Real Axis Figure 3: Freeze the compensator poles and zeros and look at the root locus of closedloop poles versus an additional loop gain α (nominally α =1.) 1 2 closed loop Gcl Figure 4: Closedloop transfer function.
12 Fall Figure 5: Example #1: G(s) = (s+8)(s+14)(s+2) Compensator Gc 1 2 closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm=1.978 db (at rad/sec), Pm= deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)
13 Fall Figure 6: Example #1: G(s) = (s+8)(s+14)(s+2) Imag Axis Real Axis Imag Axis Real Axis 3 closedloop poles, 5 openloop poles, 2 Compensator poles, Compensator zeros
14 Fall Two compensator zeros at ±6.63j draw the two lower frequency plant poles further into the LHP. Compensator poles are at much higher frequency. Looks like a lead compensator.
15 Fall Figure 7: Example #2: G(s) =.94 s Compensator Gc 1 2 closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm= db (at rad/sec), Pm= deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)
16 Fall Figure 8: Example #2: G(s) =.94 s Imag Axis Real Axis Imag Axis Real Axis 3 closedloop poles, 5 openloop poles, 2 Compensator poles, Compensator zeros
17 Fall Compensator zero at draws the two lower frequency plant poles further into the LHP. Compensator poles are at much higher frequency. Looks like a lead compensator.
18 Fall Figure 9: Example #3: G(s) = (s 8)(s 14)(s 2) Compensator Gc 1 2 closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm=.942 db (at rad/sec), Pm=6.674 deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)
19 Fall Figure 1: Example #3: G(s) = (s 8)(s 14)(s 2) Imag Axis Real Axis Imag Axis Real Axis 3 closedloop poles, 5 openloop poles, 2 Compensator poles, Compensator zeros
20 Fall Compensator zeros at 3.72±8.3j draw the two higher frequency plant poles further into the LHP. Lowest frequency one heads into the LHP on its own. Compensator poles are at much higher frequency. Note sure what this looks like.
21 Fall Figure 11: Example #4: G(s) = Compensator Gc 1 2 (s 1) (s+1)(s 3) closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm= db (at rad/sec), Pm= deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)
22 Fall Figure 12: Example #4: G(s) = (s 1) (s+1)(s 3) Imag Axis Real Axis Imag Axis Real Axis 3 closedloop poles, 5 openloop poles, 2 Compensator poles, Compensator zeros
23 Fall Compensator zero at 1 cancels the plant pole. Note the very unstable compensator pole at s =9!! Needed to get the RHP plant pole to branch off thereallineand head into the LHP. Other compensator pole is at much higher frequency. Note sure what this looks like. Separation principle gives a very powerful and simple way to develop a dynamic output feedback controller Note that the designer now focuses on selecting the appropriate regulator and estimator pole locations. Once those are set, the closedloop response is specified. Canalmostconsiderthecompensatortobeabyproduct. These examples show that the design process is extremely simple.
Topic # Feedback Control Systems
Topic #16 16.31 Feedback Control Systems StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback Back to reality Fall 2007 16.31 16 1 Combined Estimators and Regulators
More informationTopic # /31 Feedback Control Systems. StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback
Topic #15 16.3/31 Feedback Control Systems StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback Back to reality Reading: FPE 7.6 Fall 21 16.3/31 15 2 Combined
More informationTopic # Feedback Control
Topic #5 6.3 Feedback Control StateSpace Systems Fullstate Feedback Control How do we change the poles of the statespace system? Or,evenifwecanchangethepolelocations. Where do we put the poles? Linear
More informationD(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
More informationPOLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, UrbanaChampaign. Fall S. Bolouki (UIUC) 1 / 19
POLE PLACEMENT Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, UrbanaChampaign Fall 2016 S. Bolouki (UIUC) 1 / 19 Outline 1 State Feedback 2 Observer 3 Observer Feedback 4 Reduced Order
More informationState Regulator. Advanced Control. design of controllers using pole placement and LQ design rules
Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state
More informationTopic # /31 Feedback Control Systems
Topic #16 16.30/31 Feedback Control Systems Add reference inputs for the DOFB case Reading: FPE 7.8, 7.9 Fall 2010 16.30/31 16 2 Reference Input  II On page 156, compensator implemented with reference
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationCONTROL DESIGN FOR SET POINT TRACKING
Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observerbased output feedback design to solve tracking problems. By tracking we mean that the output is commanded
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationTopic # Feedback Control Systems
Topic #15 16.31 Feedback Control Systems StateSpace Systems Openloop Estimators Closedloop Estimators Observer Theory (no noise) Luenberger IEEE TAC Vol 16, No. 6, pp. 596 602, December 1971. Estimation
More informationTopic # Feedback Control Systems
Topic #20 16.31 Feedback Control Systems Closedloop system analysis Bounded Gain Theorem Robust Stability Fall 2007 16.31 20 1 SISO Performance Objectives Basic setup: d i d o r u y G c (s) G(s) n control
More information5. Observerbased Controller Design
EE635  Control System Theory 5. Observerbased Controller Design Jitkomut Songsiri state feedback poleplacement design regulation and tracking state observer feedback observer design LQR and LQG 51
More informationEECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 58 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
More informationEE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =
1. Pole Placement Given the following openloop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the statevariable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback
More informationIntro. Computer Control Systems: F9
Intro. Computer Control Systems: F9 Statefeedback control and observers Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 21 dave.zachariah@it.uu.se F8: Quiz! 2 / 21 dave.zachariah@it.uu.se
More informationProfessor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the
More informationEECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C128/ ME C134 Final Wed. Dec. 14, 211 8111 am Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth 1 points total. Problem Points Score 1 16 2 12
More informationControl Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft
Control Systems Design, SC426 SC426 Fall 2, dr A Abate, DCSC, TU Delft Lecture 5 Controllable Canonical and Observable Canonical Forms Stabilization by State Feedback State Estimation, Observer Design
More information1 (30 pts) Dominant Pole
EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +
More informationTopic # Feedback Control Systems
Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the
More informationSynthesis via State Space Methods
Chapter 18 Synthesis via State Space Methods Here, we will give a state space interpretation to many of the results described earlier. In a sense, this will duplicate the earlier work. Our reason for doing
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationLinear State Feedback Controller Design
Assignment For EE5101  Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University
More informationMAE 143B  Homework 8 Solutions
MAE 43B  Homework 8 Solutions P6.4 b) With this system, the root locus simply starts at the pole and ends at the zero. Sketches by hand and matlab are in Figure. In matlab, use zpk to build the system
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More information6 OUTPUT FEEDBACK DESIGN
6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple
More informationControl Systems Design
ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability
More informationECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
More informationEE C128 / ME C134 Final Exam Fall 2014
EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket
More informationReturn Difference Function and ClosedLoop Roots SingleInput/SingleOutput Control Systems
Spectral Properties of Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018! Stability margins of singleinput/singleoutput (SISO) systems! Characterizations
More informationFrequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods
More informationClassify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 505900 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
More informationTopic # Feedback Control
Topic #4 16.31 Feedback Control Stability in the Frequency Domain Nyquist Stability Theorem Examples Appendix (details) This is the basis of future robustness tests. Fall 2007 16.31 4 2 Frequency Stability
More informationECEEN 5448 Fall 2011 Homework #4 Solutions
ECEEN 5448 Fall 2 Homework #4 Solutions Professor David G. Meyer Novemeber 29, 2. The statespace realization is A = [ [ ; b = ; c = [ which describes, of course, a free mass (in normalized units) with
More informationModule 5: Design of Sampled Data Control Systems Lecture Note 8
Module 5: Design of Sampled Data Control Systems Lecture Note 8 Laglead Compensator When a single lead or lag compensator cannot guarantee the specified design criteria, a laglead compensator is used.
More informationCourse Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)
Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the splane
More informationTopic # Feedback Control Systems
Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19
More informationPole placement control: state space and polynomial approaches Lecture 2
: state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.fr www.gipsalab.fr/ o.sename based November 21, 2017 Outline : a state
More informationControl Systems. Design of State Feedback Control.
Control Systems Design of State Feedback Control chibum@seoultech.ac.kr Outline Design of State feedback control Dominant pole design Symmetric root locus (linear quadratic regulation) 2 Selection of closedloop
More informationAnalysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationCDS 101/110a: Lecture 81 Frequency Domain Design
CDS 11/11a: Lecture 81 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationSYSTEMTEORI  ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER
SYSTEMTEORI  ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER Exercise 54 Consider the system: ẍ aẋ bx u where u is the input and x the output signal (a): Determine a state space realization (b): Is the
More informationCDS 101/110a: Lecture 102 Control Systems Implementation
CDS 101/110a: Lecture 102 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory  Classical control 
More informationControl System Design
ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and DiscreteTime Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science
More informationExam. 135 minutes, 15 minutes reading time
Exam August 6, 208 Control Systems II (5059000) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.
More informationME 132, Fall 2017, UC Berkeley, A. Packard 334 # 6 # 7 # 13 # 15 # 14
ME 132, Fall 2017, UC Berkeley, A. Packard 334 30.3 Fall 2017 Final # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 NAME 20 15 20 15 15 18 15 20 # 9 # 10 # 11 # 12 # 13 # 14 # 15 # 16 18 12 12 15 12 20 18 15 Facts: 1.
More informationTRACKING AND DISTURBANCE REJECTION
TRACKING AND DISTURBANCE REJECTION Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, UrbanaChampaign Fall 2016 S. Bolouki (UIUC) 1 / 13 General objective: The output to track a reference
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More informationEL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)
EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the
More informationDesign Methods for Control Systems
Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 20022003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9
More informationK(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s
321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
More informationChapter 20 Analysis of MIMO Control Loops
Chapter 20 Analysis of MIMO Control Loops Motivational Examples All realworld systems comprise multiple interacting variables. For example, one tries to increase the flow of water in a shower by turning
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More informationPlan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.
Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequencyresponse design method Goal: wrap up lead and
More informationInternal Model Principle
Internal Model Principle If the reference signal, or disturbance d(t) satisfy some differential equation: e.g. d n d dt n d(t)+γ n d d 1 dt n d 1 d(t)+...γ d 1 dt d(t)+γ 0d(t) =0 d n d 1 then, taking Laplace
More informationState Feedback and State Estimators Linear System Theory and Design, Chapter 8.
1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closedloop state estimator,
More informationECE 388 Automatic Control
Controllability and State Feedback Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage:
More informationTopic # Feedback Control Systems
Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the
More informationECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationAn Internal Stability Example
An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several polezero cancellations between the controller and
More informationChapter 6  Solved Problems
Chapter 6  Solved Problems Solved Problem 6.. Contributed by  James Welsh, University of Newcastle, Australia. Find suitable values for the PID parameters using the ZN tuning strategy for the nominal
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationLecture 7 (Weeks 1314)
Lecture 7 (Weeks 1314) Introduction to Multivariable Control (SP  Chapters 3 & 4) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 7 (Weeks 1314) p.
More informationMechanical Systems Part A: StateSpace Systems Lecture AL12
AL: 436433 Mechanical Systems Part A: StateSpace Systems Lecture AL Case study Case study AL: Design of a satellite attitude control system see Franklin, Powell & EmamiNaeini, Ch. 9. Requirements: accurate
More information1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I
MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant
More informationMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A.
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski QParameterization 1 This lecture introduces the socalled
More informationLecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
More informationState Feedback and State Estimators Linear System Theory and Design, Chapter 8.
1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 State Estimator In previous section, we have discussed the state feedback, based on the assumption that all state variables are
More informationMAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noisecancelling headphone system. 1a. Based on the lowpass filter given, design a highpass filter,
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (HS 25) Solution Exercise Set Loop Shaping Noele Norris, 9th December 26 Exercise (A Nonminimum Phase System) To increase the rise time of the system, we
More informationSchool of Mechanical Engineering Purdue University. ME375 Feedback Control  1
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using
More informationTopic # Feedback Control
Topic #11 16.31 Feedback Control StateSpace Systems Statespace model features Observability Controllability Minimal Realizations Copyright 21 by Jonathan How. 1 Fall 21 16.31 11 1 StateSpace Model Features
More informationEngraving Machine Example
Engraving Machine Example MCE44  Fall 8 Dr. Richter November 24, 28 Basic Design The Xaxis of the engraving machine has the transfer function G(s) = s(s + )(s + 2) In this basic example, we use a proportional
More informationChapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steadystate Steadystate errors errors Type Type k k systems systems Integral Integral
More informationFall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian. NTUEE Sep07 Jan08
Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian NTUEE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Nonminimum Phase System) To decrease the rise time of the system,
More informationLecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:3012:30
289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (23 sessions) Final Exam on 12/21/2015 (Monday)10:3012:30 Today: Recap
More informationRaktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
More informationECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27
1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system
More informationObservability and state estimation
EE263 Autumn 2015 S Boyd and S Lall Observability and state estimation state estimation discretetime observability observability controllability duality observers for noiseless case continuoustime observability
More informationIntro. Computer Control Systems: F8
Intro. Computer Control Systems: F8 Properties of statespace descriptions and feedback Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 22 dave.zachariah@it.uu.se F7: Quiz! 2
More informationRobust Control 5 Nominal Controller Design Continued
Robust Control 5 Nominal Controller Design Continued Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 4/14/2003 Outline he LQR Problem A Generalization to LQR MinMax
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationControl Systems Design
ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline InputOutput
More informationẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)
EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 9653712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and
More informationControl Systems 2. Lecture 4: Sensitivity function limits. Roy Smith
Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017314 4.1 Inputoutput controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure
More informationLINEAR CONTROL SYSTEMS. Ali Karimpour Associate Professor Ferdowsi University of Mashhad
LINEAR CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Controller design in the frequency domain Topics to be covered include: Lag controller design 2 Dr. Ali Karimpour
More informationLecture 19 Observability and state estimation
EE263 Autumn 200708 Stephen Boyd Lecture 19 Observability and state estimation state estimation discretetime observability observability controllability duality observers for noiseless case continuoustime
More informationEE 4343/ Control System Design Project LECTURE 10
Copyright S. Ikenaga 998 All rights reserved EE 4343/5329  Control System Design Project LECTURE EE 4343/5329 Homepage EE 4343/5329 Course Outline Design of Phaselead and Phaselag compensators using
More informationStochastic Optimal Control!
Stochastic Control! Robert Stengel! Robotics and Intelligent Systems, MAE 345, Princeton University, 2015 Learning Objectives Overview of the LinearQuadraticGaussian (LQG) Regulator Introduction to Stochastic
More informationDue Wednesday, February 6th EE/MFS 599 HW #5
Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unityfeedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]
More information